Upper bounds for ternary constant weight codes from semidefinite programming and representation theory

نویسندگان

  • Guus Regts
  • D. C. Gijswijt
چکیده

In this thesis we use a semidefinite programming approach to find explicit upper bounds on the size of ternary constant weight codes with prescribed minimum distance d. By constructing a graph Γ = (X,E), on the set, X, of all possible ternary words of weight w letting {x, y} ∈ E ⇔ 0 < dH(x, y) < d, we can view this problem as a special case of the stable set problem. Using symmetry, the constraint matrices of the semidefinite program can be seen to belong to the algebra, A, of G0-invariant matrices. Where G0 is the subgroup of the automorphism group of Γ, stabilizing a special point of X. Using representation theory we give a general method for explicitly finding the block diagonalization of the algebra of G-invariant matrices for a finite group G. This is applied to the Terwilliger algebra of the binary Hamming scheme and makes it possible to interpret the entries of the block diagonalized matrices as Hahn polynomials. Moreover, we find a block diagonalization of the algebra A. This is used to reduce the complexity of the semidefinite program and makes it possible to explicitly calculate upper bounds on the size of ternary constant weight codes. One new bound has been obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New upper bounds for nonbinary codes based on the Terwilliger algebra and semidefinite programming

We give a new upper bound on the maximum size Aq(n, d) of a code of word length n and minimum Hamming distance at least d over the alphabet of q ≥ 3 letters. By blockdiagonalizing the Terwilliger algebra of the nonbinary Hamming scheme, the bound can be calculated in time polynomial in n using semidefinite programming. For q = 3, 4, 5 this gives several improved upper bounds for concrete values...

متن کامل

Bounds on Mixed Binary/Ternary Codes

Upper and lower bounds are presented for the maximal possible size of mixed binary/ternary error-correcting codes. A table up to length 13 is included. The upper bounds are obtained by applying the linear programming bound to the product of two association schemes. The lower bounds arise from a number of different constructions.

متن کامل

Ternary Constant Weight Codes

Let A3(n, d,w) denote the maximum cardinality of a ternary code with length n, minimum distance d, and constant Hamming weight w. Methods for proving upper and lower bounds on A3(n, d,w) are presented, and a table of exact values and bounds in the range n ≤ 10 is given.

متن کامل

Semidefinite bounds for nonbinary codes based on quadruples

For nonnegative integers q, n, d , let Aq(n, d) denote themaximum cardinality of a code of length n over an alphabet [q]with q letters and with minimum distance at least d . We consider the following upper bound on Aq(n, d). For any k, let Ck be the collection of codes of cardinality at most k. Then Aq(n, d) is at most the maximum value of ∑ v∈[q]n x({v}), where x is a function C4→R+ such that ...

متن کامل

New Ternary and Quaternary Equidistant Constant Weight Codes

We consider the problem of finding bounds on the size of ternary and quaternary equidistant constant weight codes. We present a computer realization of an algorithm for solving the maximum clique problem. We use it for finding the exact values of the maximum size for ternary and quaternary equidistant constant weight codes for all open cases for n ≤ 10 are found.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009